In this section, you can access to the latest technical information related to the FUTURE project topic.

Green preparation of gold nanoparticles with Tremella fuciformis for surface enhanced Raman scattering sensing

A simple in-situ synthesis method was developed to fabricate complex of Tremella fuciformis (TF) and gold nanoparticles (Au NPs). TF, one of the most popular fungi in the cuisine and medicine, acted as a biomass reducing agent and scaffold in the preparation of Au NPs. The intensities of the localized surface plasmon resonance (LSPR) of the complex of TF and Au NPs (Au@TFs) increased as the complex shrunk due to drying. The textures of TF prevent the aggregation of Au NPs during the drying process. The TFs show strong adsorption capacity for cationic dyes. It is suggested that the adsorption of the dyes onto TFs are achieved through electrostatic interactions between the TF and the dyes. Kinetics studies indicated that adsorption process could be well described by a pseudo-second-order model. Furthermore, the as-prepared Au@TFs were used as surface enhanced Raman scattering (SERS) substrates for analyzing trace dye molecules. The shrinkage of the TFs caused by drying concentrated dyes on their fruiting bodies, which led to the enhancement of Raman signals of dyes. The Au NPs on TF further enhanced the Raman signals. In-situ synthesis of Au NPs on TF may promote the applications of fungus materials in optical sensing of targets.

» Author: Bin Tang, Jun Liu, Linpeng Fan, Daili Li, Xinzhu Chen, Ji Zhou, Jingliang Li

» Reference: Applied Surface Science, Volume 427, Part A

» Publication Date: 01/01/2018

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es