In this section, you can access to the latest technical information related to the FUTURE project topic.

Simulation and experiment on transient temperature field of a magnetorheological clutch for vehicle application

The unpredictable power fluctuation due to severe heating has been demonstrated to be a critical bottleneck technique restricting the application of magnetorheological (MR) clutches in vehicle industry. The aim of this study is to introduce a low-cost transient simulation approach for evaluating the heat build-up and dissipation of a liquid-cooled MR vehicle clutch. This paper firstly performs a detailed description of the developed MR clutch in terms of operation principle, material selection and configuration. Subsequently, transient temperature simulations are carried out under various conditions to reveal the distribution, variation and impact factors of the transient temperature field. Following these, an experimental setup is established for heating tests of the clutch prototype. Experimental results concerning the temperature variation of magnetorheological fluids and the maximum allowable transient slip power of the clutch prototype are presented, which in return verify ...

» Author: Daoming Wang, Bin Zi, Yishan Zeng, Sen Qian and Jun Qian

» Reference: Daoming Wang <em>et al</em> 2017 <em>Smart Mater. Struct.</em> <b>26</b> 095020

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es