In this section, you can access to the latest technical information related to the FUTURE project topic.

Palladium supported on reduced graphene oxide as a high-performance catalyst for the dehydrogenation of dodecahydro-N-ethylcarbazole

Liquid organic hydrogen carrier technology has been considered the most promising scheme of alternative to liquid fossil fuels. However, incomplete dehydrogenation has been a bottleneck in the development, as the dehydrogenation catalysts do not have satisfactory catalytic properties. Here we report on a catalyst of Pd supported on reduced graphene oxide (rGO) prepared by ethylene glycol with excellent catalytic performance for the dehydrogenation of dodecahydro-N-ethylcarbazole (12H-NECZ). The Pd/rGO-EG catalyst exhibits a dramatically enhanced specific activity (up to 14.4 times) and uses half the amount of noble metals in contrast to the state-of-the-art commercial Pd/Al2O3 dehydrogenation catalyst. At 433, 443 and 453 K, amounts of dehydrogenation of 5.27, 5.49 and 5.78 wt%, respectively, were achieved using a 2.5 wt% Pd/rGO-EG catalyst. The dehydrogenation performance of Pd/rGO reduced by different reducing agents was irregular. The catalyst characterization of Pd/rGO-EG shows that Pd is uniformly distributed on the monolayer rGO, mainly in the form of single crystal, with the highest activity Pd (111) surface. A more accurate kinetic calculation was performed to obtain the rate constant of each elementary reaction of the dehydrogenation reaction.

» Author: Bin Wang, Ting Yan, Tieyan Chang, Jinjia Wei, Qiang Zhou, Sen Yang, Tao Fang

» Reference: Carbon, Volume 122

» Publication Date: 01/10/2017

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es