AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Optimization of bus stop layout considering multiple factors including passenger flow direction
Bus stop layout typically requires consideration of urban population distribution, traffic conditions, and passenger flow demand to establish an efficient foundation for the bus system’s operation. Based on the above key factors, this paper introduces a strategic method to optimize the bus stop layout from a macro perspective in order to save passengers’ travel time and improve the attractiveness of the bus system. This approach accounts for the matching degree between the Origin-Destination (OD) direction of passengers and their walking direction heading to bus stops. Initially, we take into account factors such as the population and area of traffic districts, and urban road conditions. Utilizing the hypernetwork multidimensional data clustering method along with GIS technology, we construct an alternative set of bus stops based on the hypernetwork framework. This set serves as a reference for the positioning of newly built and moved bus stops. Subsequently, we develop a two-stage model for bus stop layout decision-making. The first stage focuses on determining the bus stop layout at the traffic district level, taking into account multi-factors including the passenger flow matching degree. The second stage is designed to mitigate the negative impact of bus stop optimization on the overall service level of the urban bus system. A case study conducted in XT city demonstrates the effectiveness of our approach. Post-optimization, there is a 15.83% increase in the alignment between passenger flow direction and bus stop layout. Additionally, the average travel time for passengers is reduced by 7.55 minutes.
» Author: Guangchun Li, Lei Nie, Feng Gao, Zhenhuan He
» Reference: https://doi.org/10.1371/journal.pone.0313040
» Publication Date: 11/11/2024
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es