
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Optimization of household medical waste recycling logistics routes: Considering contamination risks
The escalating generation of household medical waste, a byproduct of industrialization and global population growth, has rendered its transportation and logistics management a critical societal concern. This study delves into the optimization of routes for vehicles within the household medical waste logistics network, a response to the imperative of managing this waste effectively. The potential for environmental and public health hazards due to improper waste disposal is acknowledged, prompting the incorporation of contamination risk, influenced by transport duration, waste volume, and wind velocity, into the analysis. To enhance the realism of the simulation, traffic congestion is integrated into the vehicle speed function, reflecting the urban roads’ variability. Subsequently, a Bi-objective mixed-integer programming model is formulated to concurrently minimize total operational costs and environmental pollution risks. The complexity inherent in the optimization problem has motivated the development of the Adaptive Hybrid Artificial Fish Swarming Algorithm with Non-Dominated Sorting (AH-NSAFSA). This algorithm employs a sophisticated approach, amalgamating congestion distance and individual ranking to discern optimal solutions from the population. It incorporates a decay function to facilitate an adaptive iterative process, enhancing the algorithm’s convergence properties. Furthermore, it leverages the concept of crossover-induced elimination to preserve the genetic diversity and overall robustness of the solution set. The empirical evaluation of AH-NSAFSA is conducted using a test set derived from the Solomon dataset, demonstrating the algorithm’s capability to generate feasible non-dominated solutions for household medical waste recycling path planning. Comparative analysis with the Non-dominated Sorted Artificial Fish Swarm Algorithm (NSAFSA) and Non-dominated Sorted Genetic Algorithm II (NSGA-II) across metrics such as MID, SM, NOS, and CT reveals that AH-NSAFSA excels in MID, SM, and NOS, and surpasses NSAFSA in CT, albeit slightly underperforming relative to NSGA-II. The study’s holistic approach to waste recycling route planning, which integrates cost-effectiveness with pollution risk and traffic congestion considerations, offers substantial support for enterprises in formulating sustainable green development strategies. AH-NSAFSA offers an eco-efficient, holistic approach to medical waste recycling, advancing sustainable management practices.

» Author: Jihui Hu, Ying Zhang, Yanqiu Liu, Jiaqi Hou, Aobei Zhang
» Reference: https://doi.org/10.1371/journal.pone.0311582
» Publication Date: 07/10/2024
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
