
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Phase Composition and Phase Transformation of Additively Manufactured Nickel Alloy 718 AM Bench Artifacts
Additive manufacturing (AM) technologies offer unprecedented design flexibility but are limited by a lack of understanding of the material microstructure formed under their extreme and transient processing conditions and its subsequent transformation during post-build processing. As part of the 2022 AM Bench Challenge, sponsored by the National Institute of Standards and Technology, this study focuses on the phase composition and phase evolution of AM nickel alloy 718, a nickel-based superalloy, to provide benchmark data essential for the validation of computational models for microstructural predictions. We employed high-energy synchrotron X-ray diffraction, in situ synchrotron X-ray scattering, as well as high-resolution transmission electron microscopy for our analyses. The study uncovers critical aspects of the microstructure in its as-built state, its transformation during homogenization, and its phase evolution during subsequent aging heat treatment. Specifically, we identified secondary phases, monitored the dissolution and coarsening of microstructural elements, and observed the formation and stability of ?? and ?? phases. The results provide the rigorous benchmark data required to understand the atomic and microstructural transformations of AM nickel alloy 718, thereby enhancing the reliability and applicability of AM models for predicting phase evolution and mechanical properties.

» Reference: 10.1007/s40192-023-00338-y
» Publication Date: 05/02/2024
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
