AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Study on a performance matching method of wind rotor and generator based on energy transfer
Wind power systems are a promising form of energy supply. At present, most of the studies focuses on the performance of individual components such as wind rotors or generators, and the overall output effect of wind power system is determined by the characteristics of wind rotor and generator and their combined characteristics. However, the evaluation of the overall output characteristics of the system is rarely considered. In order to investigate the overall output of the system quickly, a performance matching method of wind rotor and generator based on energy transfer is proposed in this paper. Based on the series operating characteristics of the wind power system model, the energy transformation process of the wind rotor, generator and the whole system are unified described by energy transfer. On the premise that the performance of wind rotor and generator is known, the transfer function model of each component is established, and on this basis, the transfer function model of the overall system is obtained. Then, the overall output effect of the system is analyzed and evaluated by this system transfer function model. The performance of the model is analyzed and compared by using a vertical axis wind power system coupling test bench and MATLAB/Simulink software. The results show that the error between the system output based on the theoretical model and the wind tunnel test is less than 6.5%, and the trend of the simulation and the test curve of the system output is consistent. Therefore, this method can be used to quickly predict the overall output performance of the wind turbine and generator on the premise that the performance of each component is known, without the need to connect each component to a wind power system for testing.
» Author: Minghui Ma, Lei Song, Yabin Jia, Zongxiao Yang
» Reference: https://doi.org/10.1371/journal.pone.0294504
» Publication Date: 22/11/2023
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es