AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
A hybrid adaptive large neighborhood search for time-dependent open electric vehicle routing problem with hybrid energy replenishment strategies
As competition intensifies, an increasing number of companies opt to outsource their package distribution operations to professional Third-Party Logistics (3PL) fleets. In response to the growing concern over urban pollution, 3PL fleets have begun to deploy Electric Vehicles (EVs) to perform transportation tasks. This paper aims to address the Time-Dependent Open Electric Vehicle Routing Problem with Hybrid Energy Replenishment Strategies (TDOEVRP-HERS) in the context of urban distribution. The study considers the effect of dynamic urban transport networks on EV energy drain and develops an approach for estimating energy consumption. Meanwhile, the research further empowers 3PL fleets to judiciously oscillate between an array of energy replenishment techniques, encompassing both charging and battery swapping. Based on these insights, a Mixed-Integer Programming (MIP) model with the objective of minimizing total distribution costs incurred by the 3PL fleet is formulated. Given the characteristics of the model, a Hybrid Adaptive Large Neighborhood Search (HALNS) is designed, synergistically integrating the explorative prowess of Ant Colony Optimization (ACO) with the localized search potency of Adaptive Large Neighborhood Search (ALNS). The strategic blend leverages the broad-based solution initiation of ACO as a foundational layer for ALNS?s deeper, nuanced refinements. Numerical experiments on a spectrum of test sets corroborate the efficacy of the HALNS: it proficiently designs vehicular itineraries, trims down EV energy requisites, astutely chooses appropriate energy replenishment avenues, and slashes logistics-related outlays. Therefore, this work not only introduces a new hybrid heuristic technique within the EVRP field, providing high-quality solutions but also accentuates its pivotal role in fostering a sustainable trajectory for urban logistics transportation.
» Author: Lijun Fan
» Reference: https://doi.org/10.1371/journal.pone.0291473
» Publication Date: 14/09/2023
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es