AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Quantitative law and scenario-based forecasting of different land use expansion, based on reliability analysis in mountainous areas
The continuous high-intensity and disorderly expansion of construction land in mountainous areas threatens city development; consequently, the scientific guidance of its sustainable development has become a research hotspot. This work aimed to develop a new theoretical framework for predicting land expansion. Based on DMSP/OLS-Landsat 7 data correction from 2000 to 2019, to ensure data reliability, this study quantitatively analysed the expansion law of land-use and land-cover (LULC) in Huayuan, a typical mountainous area in China. Based on the land expansion law, the patch-generating land use simulation (PLUS) model was used to predict various types of LULCs in different scenarios. The results showed that (1) the reliability of LULC under multi-source spatio-temporal data correction reached more than 0.97. (2) The expansion law of industrial and mining land, urban living land, and traffic land is sprawl, while rural living land is enclaved and the expansion direction and intensity are obviously different. (3) The scale of land expansion in the natural-oriented scenario was significantly higher than that in the humanism-oriented scenario, with a higher value of 199.33 hm2. This study expands the case study of land use analysis and prediction, and provides scientific guidance for different land expansion planning, which can avoid the mismatch and waste of land resources. Furthermore, it also deepens the exploration of LULC identification reliability method and enriches the theory of different land use prediction in mountainous areas.
» Publication Date: 26/07/2023
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es