In this section, you can access to the latest technical information related to the FUTURE project topic.

Analysis and Experimental of Seeding Process of Pneumatic Split Seeder for Cotton

In order to study the working mechanism and sowing effect of seed delivery pipes and their associated cavity seeders, the factors affecting the sowing test were first derived through pressure loss theory and force analysis of cotton seed particles in the gas-solid coupling field. Secondly, Ansys fluent was used to simulate the flow field of seed delivery pipe joints to study the effect of seed delivery pipe joints on the overall pressure loss and uniformity of air pressure distribution and to determine the optimal structure of seed delivery pipe joints. Then, the EDEM was simulated for the overall seed delivery pipe and its associated cavity seeders in the absence of positive pressure to analyze the transport pattern of each cotton seed. Finally, CFD-DEM gas-solid coupling simulation experiments were conducted on the center of two rows of seed delivery pipes and their connected cavity seeders to analyze the trajectory of cotton seeds under different rotational speeds of cavity seeders and different positive seed delivery pressures and to deeply analyze the causes of Multiple seeding and Miss-seeding. At the same time, the seeding performance was evaluated by coupling simulation values with single seeding rate and multiple seeding rate as seeding performance evaluation indexes and compared with bench test. The results show that in the coupling simulation, when the speed of the cavity seeders is 20~40 rev/min and the seed delivery tube is passed into 50~150 Pa positive pressure airflow, the single seeding rate is not less than 83.06%, and the missed seeding rate is not more than 9.23%. In the bench test, the single seeding rate was not less than 80.64%, and the missed seeding rate was not more than 9.86% under the same cavity seeders speed and positive pressure, and the results of the bench test and the simulation test were close and consistent, which verified the feasibility of the simulation.

» Author: Kezhi Li

» Reference: doi: 10.3390/agriculture13051050

» Publication Date: 12/05/2023

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es