AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Effective treatment of petroleum oil?contaminated wastewater using activated sludge modified with magnetite/silicon nanocomposite
The study aimed to optimize the treatment of oil refinery?contaminated wastewater through modification of the well-established activated sludge process with new nanocomposite (NC) materials to produce high-quality treated effluents for potential reuse. Refinery wastewater samples were collected from one of the major oil refineries, Alexandria, Egypt, where the operation, performance, and efficiency of the current activated sludge (AS) unit were evaluated for 6 consecutive months. Two AS bench scale PVC basins were constructed. Magnetite nanoparticles (Fe3O4 NPs) and magnetite silica (Fe3O4/silica) nanocomposite (NC) were prepared and characterized. Bioremediation trials were carried out in a sequential batch mode using Fe3O4/silica NC?modified AS and control (unmodified AS). The proposed treatment produced high-quality effluents in a very short time (2?h) despite the very high initial pollutant concentration accompanied with a reduction in the produced sludge. The highest removal of TSS, TDS, BOD, COD, and OG from raw industrial wastewater recorded 78.33, 3.6, 87.65, 85.17, and 92.92% compared to 55.3, 12.6, 50.0, 40.22, and 56.84%, respectively, achieved by the unmodified AS unit. The results confirmed that integration of the AS treatment with nanomaterial composite is highly effective, promising, and economic for the treatment of highly toxic and complicated industrial wastewater such as petroleum refinery effluents.
» Publication Date: 01/05/2023
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es