
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Effects of hole shape and bottom gap on the flow characteristics behind butterfly porous fence and its application in dust diffusion control in large open-air piles
In view of the possible dust pollution of atmospheric caused by large open-air piles, a scheme of using butterfly porous fences is proposed. Based on the actual cause of large open-air piles, this study makes an in-depth study on the wind shielding effect of butterfly porous fences. The effects of hole shape and bottom gap on the flow characteristics are investigated behind the butterfly porous fence with the porosity of 0.273 through the combined methods of computational fluid dynamics and validating PIV experiments. The streamlines distribution and X-velocity behind the porous fence of numerical simulation are in good agreement with the experimental results and based on the research group?s previous work, the numerical model is feasible. The concept of the wind reduction ratio is proposed to quantitatively evaluate the wind shielding effect of the porous fence. The results show that the butterfly porous fence with circular holes provided the best shelter effect with the wind reduction ratio of 78.34%, and the optimal bottom gap ratio is about 0.075 with the highest wind reduction ratio of 80.1%. When a butterfly porous fence is applied on site, the diffusion range of dust in open-air piles is significantly reduced compared with that without a fence. In conclusion, the circular holes with the bottom gap ratio of 0.075 are suitable for the butterfly porous fence in practical applications and provide a solution for wind-induced control in large open-air piles.

» Publication Date: 13/03/2023
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
