AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Analyzing the effect of view factors on surface heat flux, surface temperature, and vegetation cover
With the increase in population in cities, economic, social, and environmental problems continue to increase, and it is thought that the microclimatic conditions created by these problems will cause more environmental problems. One of the factors affecting the urban climate in urban areas is urban geometry. The climate of a region changes due to the shape of the land surface, human activities, atmospheric movements, and latent and sensible heat fluxes. Sky view factor (SVF), building view factor (BVF), and tree view factor (TVF) are actively used in the determination of urban geometry. However, studies on how these factors affect the thermal state of the urban environment are insufficient. Determining the land surface changes and thermal condition characteristics (LST, NDVI, SHF, and LHF) depending on urban growth and examining how these properties affect thermal conditions are very important in the construction of sustainable urban planning. In the study, SVF, BVF, TVF, LST, NDVI, SHF, and LHF values of 55 points determined for three different areas with different urban geometries were calculated. How these values affect each other and their situation on urban outdoor thermal comfort is evaluated. In the study, statistical analysis was performed to evaluate the relationship between surface temperature, surface heat fluxes, different view factors, and vegetation. As a result of ANOVA analysis, it was determined as very significant (p?>?0.01) in all regions. Both SHF and LHF values differ with SVF. The SHF value has a direct relationship with the SVF value. LHF is inversely proportional to the SVF value. The situation is reversed for SHF variation concerning vegetation. LHF and NDVI are directly related. SHF and NDVI are inversely proportional. SVF and NDVI values also vary according to the LST value. It has been observed that LST has a direct relationship with SVF and an inverse relationship with NDVI.
» Publication Date: 21/01/2023
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es