In this section, you can access to the latest technical information related to the FUTURE project topic.

Multi-Scale Analysis for Assessing the Impact of Material Composition and Weave on the Ultimate Strength of GFRP Stiffened Panels

A micro-meso-macro analysis framework based on the multi-scale method was employed to analyse the mechanical behaviour of marine GFRP stiffened panels. The study aims to establish a procedure for assessing the impact of material composition and weave on the ultimate strength of GFRP stiffened panels. The ultimate strength assessment was an essential step in the design process, and the investigation of construction materials has a great benefit to the lightweight design of marine composite structures. The micro- and meso-scale RVE models of components used in GFRP materials are established, and their failure criteria and stiffness degradation models are created using the user-defined material subroutine VUMAT in ABAQUS. The equivalent material properties at the micro-scale (meso-scale) obtained by a homogenisation method are used to define the meso-scale (macro-scale) mechanical properties in the finite element analyses. The multi-scale method assesses the macro-mechanics of composites, and it is shown that the ultimate strength of GFRP stiffened panels is mainly determined by the failure of CSM fibre bundles and WR yarns. Parametric study of the meso-mechanics of composite materials can provide an analysis tool to obtain the optimal macro ultimate strength of the composite stiffened panel.

» Author: Bin Liu

» Reference: doi: 10.3390/jmse11010108

» Publication Date: 05/01/2023

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es