
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Boosting the oxygen reduction reaction behaviour of Ru single atoms in porous carbon nanospheres via microscopic coordination environment manipulation
The development of high-performing oxygen reduction reaction (ORR) single atom catalysts (SACs) is the basis for mass production of metal-air batteries and fuel cells. This is also an important means to achieve peak carbon dioxide emissions and carbon neutrality. Ru SACs can effectively imped Fenton reactions and significantly enhance resistance to attenuation. However, Ru SACs exhibit inferior ORR activity than TM (transition metal)-N-C catalysts and Ru atoms are prone to agglomeration. Herein, we report a simple method for the controllable preparation of Ru SAs in N and S modulated porous carbon nanospheres (Ru-SAs-N/S-PCNSs). S heteroatoms doping can change the charge density of Ru central metal atom, and reduce its binding strength to ORR intermediates, and expedite ORR activity. The porous carbon nanospheres matrix makes Ru SAs active site fully exposed. The onset potential and half-wave potential of Ru-SAs-N/S-PCNSs electrocatalyst is as high as 1.0?V and 0.87?V (vs RHE), which is in the excellent ranks. In addition, the performance of Zn-air battery with Ru-SAs-N/S-PCNSs is better than that of Pt/C?+?RuO2. The synthesis method we developed can effectively preclude the agglomeration of Ru metal atoms, and provides a new pathway for the preparation of SACs with high catalytic performance.

» Author: Ping Li, Jin Li, Lixiu Cui, Yu Zhang, Kaicai Fan, Bin Li, Lingbo Zong, Lei Wang
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
