In this section, you can access to the latest technical information related to the FUTURE project topic.

Mechanical properties of hybrid fiber reinforced ternary-blended alkali-activated materials

This study employed fly ash, blast furnace slag and steel slag to synthesize ternary-blended alkali-activated materials (AAMs) in order to make full use of the industrial solid wastes and improve the mechanical performance by synergistic effects of the precursors. However, peudo-brittle nature is still the main problem of ternary-blended AAMs. To solve this problem, the effect of hybrid fibers consisting of high-modulus steel (ST) fiber and low-modulus Polyvinyl Alcohol (PVA) fiber on the mechanical properties of the ternary-blended AAMs was evaluated by testing their setting time, flowability, uniaxial compressive strength (UCS), indirect tensile strength (IDT), uniaxial tensile strength (UTS), and three-point bending strength (3PBS). Also, the microstructure of the matrix and fibers were analyzed using a scanning electron microscope. The results show that the flowability and setting time increased with the increasing replacement of PVA fiber by ST fiber. At the PVA/ST fiber volume ratio of 1:1, the AAMs cured for 28?days achieved the highest UCS, IDT, UTS, and 3PBS, which were 32?%, 91?%, 80?% and 114.7?% higher than the AAMs without fiber reinforcement, respectively. The fracture pattern and microstructure illustrated that the best synergistic effect of hybrid fibers was achieved at the PVA:ST fiber ratio of 1:1, at which the small-sized PVA fibers and large-sized ST fibers can inhibit the propagation of micro- and macro-cracks at early and late deformation processes. Furthermore, the ultimate elongation of the composite was improved from 2.62?% to 4.21?% and 5.3?% by modifying the PVA fiber with acrylic polyurethane copolymer and replacing the PVA fiber with polyethylene fiber, respectively, implying the significance of surface hydrophilicity of low-modulus fiber on the ductility of AAMs. This study provided a guide for synthesizing and tailoring the mix design of hybrid-fiber-reinforced ternary AAMs with better strength and ductility.

» Author: Mo Zhang, Yalin Yao, Junfei Zhang, Ling Wang, Fang Wang, Zhaoyang Ma, Bin Wang

» Publication Date: 22/02/2023

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es