
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Effect of particle size composition on the separation of waste printed circuit boards by vibrated gas?solid fluidized bed
The mechanism of fine particles on the separation of waste printed circuit boards by vibrated fluidized bed is not clear. In this paper, the influence of particle composition on fluidization behavior and separation characteristics of waste printed circuit boards particles was studied. The separation results showed that the increase of fine particles significantly reduced the metal recovery. When the content of fine particles was 20?%, the concentrate yield decreased by 11.26?% and the metal recovery declined by 15.93?%. The analysis of fluidization characteristics proved that the stability of the bed was reduced at higher fine particle content. When the content of fine particles was 20?%, the standard deviation of bed pressure drop was 34.15?Pa higher than that without fine particles. And the microscopic and X-ray fluorescence analysis confirmed that the adhesion behavior of fine particles prevented them from being separated by density. In addition, it was found that the pre-removal of iron and aluminum could effectively improve the separation performance with a fine particle content of 20?%, and the metal recovery increased by 6.29?%. Based on this, our findings will provide important guidance for efficient recovery of valuable metals from waste printed circuit boards.

» Author: Lingtao Zhu, Jingfeng He, Xin Zhang, Bin Yang, Hao Chen, Linghua Chen, Yake Yao
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
