AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
A cobalt free triple charge conducting Sm0.2Ce0.8O2-?-Ba0.5Sr0.5Fe0.8Sb0.2O3-? heterostructure composite cathode for protonic ceramic fuel cell
Protonic ceramic fuel cells (PCFCs) are considered more capable of operating at low temperature than solid oxide fuel cells (SOFCs) e.g., at 300?600 ?C because of low activation energy associated with proton transport if suitable cathodes can be developed. Herein, we have developed a cobalt-free triple charge conducting (oxygen ion, proton and electron-hole) Sm0.2Ce0.8O2-?-Ba0.5Sr0.5Fe0.8Sb0.2O3-? (SDC-BSFSb) heterostructure composite for PCFC cathode. The SDC-BSFSb exhibit very low-area-specific resistance with large oxygen reduction reaction (ORR) activity over barium-ceria-based proton conducting perovskite-oxide electrolytes. We have demonstrated high-power densities of 705?mW-cm2 for a button-sized PCFC at 550?C using H2/air fuels, and even with possible operation at 400?C. Various spectroscopic measurements such as X-ray photoelectron, U-visible, Raman, and Density Functional Theory (DFT) calculations were employed to understand the improved ORR electrocatalyst function of SDC-BSFSb heterostructure composite for PCFCs cathode. It is found that SDC-BSFSb effectively showed enhanced ionic and electronic properties to exhibit high ORR at the interface of SDC and BSFSb particles. The results can further help to develop functional cobalt-free electro-catalysts for LT-PCFCs/LT-SOFCs and other related applications.
» Author: Yuzheng Lu, Naveed Mushtaq, M.A.K. Yousaf Shah, Muhammad Sultan Irshad, Sajid Rauf, Muhammad Yousaf, Bin Zhu
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es