
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
In-situ sludge reduction based on Mn2+-catalytic ozonation conditioning: Feasibility study and microbial mechanisms
To improve the sludge conditioning efficiency without increasing the ozone dose, an in-situ sludge reduction process based on Mn2+-catalytic ozonation conditioning was proposed. Using ozone conditioning alone as a control, a lab-scale sequencing batch reactor coupled with ozonated sludge recycle was evaluated for its operating performance at an ozone dose of 75 mg O3/g VSS and 1.5 mmol/L Mn2+ addition. The results showed a 39.4% reduction in MLSS and an observed sludge yield of 0.236 kg MLSS/kg COD for the O3+Mn2+ group compared to the O3 group (15.3% and 0.292 kg MLSS/kg COD), accompanied by better COD, NH4+-N, TN and TP removal, improved effluent SS and limited impact on excess sludge properties. Subsequently, activity tests, BIOLOG ECO microplates and 16S rRNA sequencing were applied to elucidate the changing mechanisms of Mn2+-catalytic ozonation related to microbial action: (1) Dehydrogenase activity reached a higher peak. (2) Microbial utilization of total carbon sources had an elevated effect, up to approximately 18%, and metabolic levels of six carbon sources were also increased, especially for sugars and amino acids most pronounced. (3) The abundance of Defluviicoccus under the phylum Proteobacteria was enhanced to 12.0% and dominated in the sludge, they had strong hydrolytic activity and metabolic capacity. Denitrifying bacteria of the genus Ferruginibacter also showed an abundance of 7.6%, they contributed to the solubilization and reduction of sludge biomass. These results could guide researchers to further reduce ozonation conditioning costs, improve sludge management and provide theoretical support.

» Author: Haozhe Huang, Tingting Wei, Hui Wang, Bing Xue, Sisi Chen, Xiankai Wang, Haibin Wu, Bin Dong, Zuxin Xu
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
