AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Electrical stimulation enables dynamic regulation of the tribological behaviors of polyelectrolyte-modified carbon dots
Dynamic and active control of the tribological behaviors of lubricant additives under electrical stimulation is important for the development of electromechanical devices. Carbon dots (CDs) show great prospects in electrical contact lubrication owing to their easily acquired oil dispersibility, ionic conductivity, and high lubricity. Herein, the polyelectrolyte-modified CDs (PCDs) were synthesized from the chitosan-derived polyamine-terminated CDs. The PCDs can be stabilized in polyethylene glycol (PEG200) synthetic oil for more than one year without any precipitates and fluorescence decay. Compared with neat PEG200, the formulated PCDs (0.25?wt%)/PEG200 lubricant achieved 63.6% and 39.1% reductions in wear and friction, respectively. In addition, the durability of PEG200 also can be enhanced by PCDs. Crucially, the friction regulation of PCDs under external electric fields (as low as ?1.0?V) was easily realized for the first time, which effectively helps to reveal the indispensable role of polyelectrolyte shells in improving the tribological performances of PCDs. Experiments and characterizations demonstrated that the superior tribological peculiarities of PCDs benefited from the collaborations of their polyelectrolyte shells and carbon cores. The findings provide a universal protocol and material support for expediting the potential-controlled lubrication progress of nano-additives.
» Author: Zihao Mou, Jie Peng, Ruixin Yan, Qingbin Yang, Bin Zhao, Dan Xiao
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es