In this section, you can access to the latest technical information related to the FUTURE project topic.

Healthier and Environmentally Responsible Sustainable Cities and Communities. A New Design Framework and Planning Approach for Urban Illumination

Although sustainability and sustainable development are both considered necessary practices in various fields today, a recent analysis showed that the Sustainable Development Goal SDG11: Sustainable Cities and Communities established by the United Nations does not address urban illumination and its impact. This oversight is of concern because research carried out in the last 20+ years indicates artificial light at night (ALAN) in cities, and the light pollution this generates can have negative consequences on human health and well-being and the entire environment, including ecosystems and the flora and fauna that inhabit them. By applying a literature review, analysis and synthesis method, this work offers a new perspective on lighting and a timeline of key events that established ALAN and light pollution awareness in different disciplines and professional groups connected to urban illumination. It also identifies three fundamental aspects which require further transdisciplinary research and the translation of this knowledge into practice in order to enable the development of sustainable cities and communities at night. Finally, it presents in detail a new, theoretical environment-centred design framework for responsible urban illumination, with four iterative design phases, in order to help guide various stakeholders in cities, along with a four-level pyramid model that can be applied to urban illumination in the form of principles, processes, practices, and tools. This framework is especially relevant for those urban planners, architects, and landscape designers, who are unfamiliar with the subject in order to present the most effective and appropriate lighting design approach and methods that should be taken into consideration with the design of a given urban nighttime environment/situation.

» Author: Zielinska-Dabkowska

» Reference: doi: 10.3390/su142114525

» Publication Date: 04/11/2022

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es