AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Influence of novel polymer waterproofing membrane on mechanical properties of tunnel lining structure
The composite shell lining of tunnels uses an adhesive waterproofing membrane to replace the traditional sheet waterproofing membrane, which can improve the waterproofing performance of the tunnel and provide excellent mechanical characteristics. To calculate and design the lining structure, it is necessary to evaluate the influence of the existence of the bond interface on the mechanical behaviour of the lining structures. In this study, a four-point bending test was performed on a reinforced concrete beam with a novel polymer waterproofing membrane and the degree of composite action was quantitatively calculated. Under the bonding effect of the waterproofing membrane, the beam with the waterproofing membrane had a certain degree of composite action, and its strength and stiffness were also significantly improved compared with the beam with a sheet waterproofing membrane. ABAQUS software was used to establish the numerical calculation model of the beam with a spray-applied waterproofing membrane verified by testing, and the influence of the interface on its mechanical behaviour was analysed. The degree of composite action also increases with an increase in the waterproofing membrane thickness and interface stiffness.
» Author: Yajun Jiang, Bin He, Jumei Zhao, Huqiang Pei, Jitai Liu, Huqun Wang
» Publication Date: 19/12/2022
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es