In this section, you can access to the latest technical information related to the FUTURE project topic.

Thermally conductive 2D filler orientation control in polymer using thermophoresis

To achieve efficient heat dissipation using polymer composites, it is important to optimize the heat conduction pathway. Therefore, manipulating the orientation of thermally conductive and anisotropic fillers in composites represents a judicious strategy. So far, external fields have been applied to align fillers within the matrix. However, these processes are energy-intensive and require stimuli-responsive fillers through surface modification, further complicating the process and deteriorating filler thermal conductivity. Herein, to these ends, a facile method for manufacturing composite with an orientation-controlled model anisotropic filler, hexagonal boron nitride (h-BN), was proposed by harnessing thermophoresis. Thermophoresis causes movement and/or rotation of solid particles in a fluid with a steady temperature gradient. A suspension of UV-curable monomer with well-dispersed h-BN was subjected to a temperature gradient, inducing filler rotation via thermophoresis. A subsequent photo-curing yielded a solid composite with the frozen h-BN aligned in a direction agreed with expected for thermophoresis, as indicated by the anisotropic thermal conductivity measurement and cross-sectional scanning electron microscopy (SEM) observation. Additionally, the theoretically estimated Peclet number, induced by thermophoresis, was higher than the experimentally determined value required to align suspended h-BN. To our best knowledge, the current study is the first experimental demonstration of controlling anisotropic filler orientation using thermophoresis.

» Author: Seong-Bae Min, Mingeun Kim, Kyu Hyun, Cheol-Woo Ahn, Chae Bin Kim

» Publication Date: 01/01/2023

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es