AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Thermally conductive 2D filler orientation control in polymer using thermophoresis
To achieve efficient heat dissipation using polymer composites, it is important to optimize the heat conduction pathway. Therefore, manipulating the orientation of thermally conductive and anisotropic fillers in composites represents a judicious strategy. So far, external fields have been applied to align fillers within the matrix. However, these processes are energy-intensive and require stimuli-responsive fillers through surface modification, further complicating the process and deteriorating filler thermal conductivity. Herein, to these ends, a facile method for manufacturing composite with an orientation-controlled model anisotropic filler, hexagonal boron nitride (h-BN), was proposed by harnessing thermophoresis. Thermophoresis causes movement and/or rotation of solid particles in a fluid with a steady temperature gradient. A suspension of UV-curable monomer with well-dispersed h-BN was subjected to a temperature gradient, inducing filler rotation via thermophoresis. A subsequent photo-curing yielded a solid composite with the frozen h-BN aligned in a direction agreed with expected for thermophoresis, as indicated by the anisotropic thermal conductivity measurement and cross-sectional scanning electron microscopy (SEM) observation. Additionally, the theoretically estimated Peclet number, induced by thermophoresis, was higher than the experimentally determined value required to align suspended h-BN. To our best knowledge, the current study is the first experimental demonstration of controlling anisotropic filler orientation using thermophoresis.
» Author: Seong-Bae Min, Mingeun Kim, Kyu Hyun, Cheol-Woo Ahn, Chae Bin Kim
» Publication Date: 01/01/2023
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es