AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Prediction of bulk mechanical properties of PVC foam based on microscopic model?Part II-Material characterization and analytical formulae
The bulk mechanical properties of a foam are strongly related with the modulus of elasticity and yield strength of the base material and the geometric features of the foam microstructure. This paper proposed a method to predict the bulk mechanical properties of transversely isotropic closed-cell polyvinyl chloride (PVC) foams based on the numerical analysis of microscopic models. Firstly, the elastic modulus of the base material was determined through nanoindentation and the macro compressive stress-strain curves in three orthogonal directions were measured for the Divinycell H100 foam. Then, the influence of variation of the scaling factor, which transformed an isotropic microstructure to a transversely isotropic one, on the mechanical properties were investigated numerically. It is found that the ratio of the two moduli of elasticity in the rise direction and in the transverse direction linearly depends on the scaling factor, so does the ratio of the yield strengths. Next, the relations of the bulk mechanical properties of the transversely isotropic foam in the two directions with the relative density were formulated. Finally, this method was validated by being successfully applied to foams of the same base material but different densities.
» Author: Yong Zhou, Bin Xue, Weiping Zhang, Renpeng Wang
» Publication Date: 01/01/2023
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es