
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Simpler is better: A heterometallic (Mn-Na) metal organic framework (MOF) with a rare myc topology synthesized from bench chemicals for selective adsorption and separation of organic dyes
The present work summarizes the design of a new heterometallic (Mn-Na) metal organic framework (MOF) synthesized under solvothermal conditions. The single crystal X-ray analysis uncovers its composition as [MnNa(HCOO)3]n. The crystallography reveals the presence of two metal ions in the asymmetric unit i.e., Mn and Na which are connected through a bridging formate ligand. Both Mn(II) and Na(I) are coordinated by six oxygen atoms thus forming a distorted octahedral geometry around each metal ion. The HCOO? ligand acts as a bridge to propagate the structure along the three axis resulting in a 3D MOF. Each oxygen of the formate is coordinated to both Mn and Na. Topological analysis shows a rare myc topology of the MOF which is very uncommon among the coordination polymers reported so far. The resulting Mn-Na shows excellent selectivity, in the aqueous phase, for adsorption and separation of cationic dye, methylene blue (MB) with an adsorption capacity to be 46.22?mg?g?1. Moreover, this adsorbent material showed excellent structural stability and recyclability; and the pseudo-second-order kinetics for adsorption. The plausible mechanism suggests that the HSAB concept is responsible for the adsorption process. Hard donors of dye molecules build strong interactions with hard Na+ ions embedded in MOF. Thus, the designed MOF is the first example in heterometallic MOF chemistry to show dye adsorption and is established as a simple, easy to prepare and low-cost polymer for environmental protection for future endeavours.

» Author: Nazir Ud Din Mir, M. Shahwaz Ahmad, Shabnam Khan, Mohammad Yasir Khan, Farhat Vakil, Shashank Saraswat, M. Shahid
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
