
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Development of a gait speed estimation model for healthy older adults using a single inertial measurement unit
Although gait speed changes are associated with various geriatric conditions, standard gait analysis systems, such as laboratory-based motion capture systems or instrumented walkways, are too expensive, spatially limited, and difficult to access. A wearable inertia sensor is cheap and easy to access; however, its accuracy in estimating gait speed is limited. In this study, we developed a model for accurately estimating the gait speed of healthy older adults using the data captured by an inertia sensor placed at their center of body mass (CoM). We enrolled 759 healthy older adults from two population-based cohort studies and asked them to walk on a 14 m long walkway thrice at comfortable paces with an inertia sensor attached to their CoM. In the middle of the walkway, we placed GAITRite? to obtain the gold standard of gait speed. We then divided the participants into three subgroups using the normalized step length and developed a linear regression model for estimating the gold standard gait speed using age, foot length, and the features obtained from an inertia sensor, including cadence, vertical height displacement, yaw angle, and role angle of CoM. Our model exhibited excellent accuracy in estimating the gold standard gait speed (mean absolute error = 3.74%; root mean square error = 5.30 cm/s; intraclass correlation coefficient = 0.954). Our model may contribute to the early detection and monitoring of gait disorders and other geriatric conditions by making gait assessment easier, cheaper, and more ambulatory while remaining as accurate as other standard gait analysis systems.

» Author: Hyang Jun Lee, Ji Sun Park, Jong Bin Bae, Ji won Han, Ki Woong Kim
» Reference: https://doi.org/10.1371/journal.pone.0275612
» Publication Date: 06/10/2022
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
