
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
The application of machine learning based energy management strategy in multi-mode plug-in hybrid electric vehicle, part I: Twin Delayed Deep Deterministic Policy Gradient algorithm design for hybrid mode
As the performance of Energy Management Strategy (EMS) is crucial for the energy efficiency of Hybrid Electric Vehicles (HEVs), a Deep Reinforcement Learning (DRL)-based algorithm, namely Twin Delayed Deep Deterministic Policy Gradient (TD3), is adopted to design EMS for the power Charge-Sustained (CS) stage of a multi-mode plug-in Hybrid Electric Vehicle (HEV). In addition, EMS is improved by combining the actor-network of TD3 with Gumbel-Softmax to realize mode selection and torque distribution simultaneously, which is a discrete (mode)-continuous (engine speed) hybrid action space and not applicable in original TD3. To reduce the unreasonable exploration of agents in discrete action, a rule-based mode control mechanism (RBMCM) is designed and involved in EMS. The improved algorithm speeds up the learning process and achieves better fuel economy. Simulation results show that the gap between the proposed strategy and the benchmark dynamic programming (DP) is reduced to 2.55% in the selected training cycle. Regarding the unknown testing cycles, the fuel economy of agents trained by the improved method overperforms traditional DRL-based EMS when it reaches more than 90% of the DP-based benchmarking. In conclusion, the proposed method provides a theoretical foundation for the solution of the hybrid space optimization problem for hybrid systems.

» Author: Changcheng Wu, Jiageng Ruan, Hanghang Cui, Bin Zhang, Tongyang Li, Kaixuan Zhang
» Reference: Energy, Volume 262, Part B
» Publication Date: 01/01/2023
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
