
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Interface assembly of flower-like Ni-MOF functional MXene towards the fire safety of thermoplastic polyurethanes
In this study, three-dimensional flower-like Ni-MOFs were fabricated and successfully functionalized on multi-terminal lamellar MXene (Ti3C2Tx) by solvothermal method, and their flame retardant application in thermoplastic polyurethanes (TPU) was investigated. As expected, the addition of [email protected]3C2Tx can improve the flame retardancy and smoke suppression properties of TPU. The heat release rate, the smoke release rate, total smoke production, CO and CO2 release of the composite with only 1?wt% [email protected]3C2Tx were significantly reduced by 15%, 44%, 26%, 18%, and 8%, respectively. Furthermore, the carbon residues of TPU/[email protected]3C2Tx composites were about 2?5 times that of pure TPU, indicating that the [email protected]3C2Tx can inhibit the thermal degradation of TPU. The mechanism illustrated that the excellent fire safety properties of TPU/[email protected]3C2Tx composites are due to the physical barrier, catalytical carbonization, and gas-phase flame retardant of [email protected]3C2Tx. In this work, the dispersity, thermal stability, and flame retardancy of MXene were improved due to the modification of MXene with Ni-MOF by chemical bonding and physical adsorption, which can broaden the range of applications of MOFs.

» Author: Mei Wan, Congling Shi, Xiaodong Qian, Yueping Qin, Jingyun Jing, Honglei Che, Fei Ren, Jian Li, Bin Yu
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
