AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Evaluation of urban form influence on pedestrians' wind comfort
In recent decades, the pedestrian's outdoor thermal comfort has been critical for designing sustainable cities, which can be affected by wind flow in urban spaces. Urban forms influence wind speed, changing the urban air quality, and causing pedestrians' thermal comfort or discomfort. Therefore, it is required to design the urban spaces in such a way as to regulate the wind speed in order to provide thermal comfort situations for pedestrians based on their climate conditions. This study aimed to provide a framework for analysing the outdoor thermal comfort of various building layouts and their relation to wind speed in a site. This paper also proposed new indexes for improvements to the Physiological Equivalent Temperature (PET) index enabling the calculation of outdoor thermal comfort based on the likelihood of people being outside for a whole day. In-situ measurements were carried out in Tehran, Iran, to validate the presented framework. Simulations were conducted for 15 critical points in nine different building layouts for the windiest day on the site. ENVI-met was used to simulate the wind speed, outdoor air temperature, and mean radiant temperature, while PET was calculated by means of Leonardo and RayMan. The results demonstrated that pedestrians' outdoor thermal comfort for in-site and out-site points improved by 2.8% and 2.3%, respectively, compared to the current site situation. Also, the framework produced a suitable urban form to provide outdoor thermal comfort with evaluating different urban forms.
» Author: Alireza Norouziasas, Peiman Pilehchi Ha, Mona Ahmadi, Hom Bahadur Rijal
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es