
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Prediction of COPD acute exacerbation in response to air pollution using exosomal circRNA profile and Machine learning
Ambient fine particulate matter (PM2.5) is linked to an increased risk of chronic obstructive pulmonary disease (COPD) exacerbations, which significantly increase the risk of mortality in COPD patients. Identifying the subtype of COPD patients who are sensitive to environmental aggressions is necessary. Using in vitro and in vivo PM2.5 exposure models, we demonstrate that exosomal hsa_circ_0005045 is upregulated by PM2.5 and binds to the protein cargo peroxiredoxin2, which functionally aggravates hallmarks of COPD by recruiting neutrophil elastase and triggering in situ release of tumor necrosis factor (TNF)-? by inflammatory cells. The biological function of hsa_circ_0005045 associated with aggravation of COPD is validated using exosome-transplantation and conditional circRNA-knockdown murine models. By sorting the major components of PM2.5, we find that PM2.5-bound heavy metals, which are distinguishable from the components of cigarette smoke, trigger the elevation of exosomal hsa_circ_0005045. Finally, using machine learning models in a cohort with 327 COPD patients, the PM2.5 exposure-sensitive COPD patients are characterized by relatively high hsa_circ_0005045 expression, non-smoking, and group C (mMRC 0?1 (or CAT?

» Author: Qingtao Meng, Jiajia Wang, Jian Cui, Bin Li, Shenshen Wu, Jun Yun, Michael Aschner, Chengshuo Wang, Luo Zhang, Xiaobo Li, Rui Chen
» Publication Date: 01/10/2022
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
