AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
A new outlier detection method for spherical data
In this study, we propose a new method to detect outlying observations in spherical data. The method is based on the k-nearest neighbours distance theory. The proposed method is a good alternative to the existing tests of discordancy for detecting outliers in spherical data. In addition, the new method can be generalized to identify a patch of outliers in the data. We obtain the cut-off points and investigate the performance of the test statistic via simulation. The proposed test performs well in detecting a single and a patch of outliers in spherical data. As an illustration, we apply the method on an eye data set.
» Author: Adzhar Rambli, Ibrahim Bin Mohamed, Abdul Ghapor Hussin
» Reference: https://doi.org/10.1371/journal.pone.0273144
» Publication Date: 24/08/2022
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es