
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Catalytic depolymerization of lignin via transfer hydrogenation strategy over skeletal CuZnAl catalyst
Selective cleavage of the aromatic CO bonds in lignin is a crucial step for lignin valorization to produce value-added chemicals, however, the development of efficient catalysts for mild conversions is still challenging. Herein, non-precious skeletal CuZnAl catalysts were firstly reported for the depolymerisation of lignin dimers and real organosolv lignin via the catalytic transfer hydrogenation (CTH) method. Typical lignin dimers, including ?-O-4, ?-O-4 and 4-O-5 types, were all effectively converted to the corresponding aromatics and alcohols in isopropanol under mild reaction condition. Furthermore, birch organosolv lignin was also well depolymerized into monophenols in 56.1?wt% yield. Experiments revealed that the water brought by the wet catalyst effectively promoted the CO bond cleavage, but slightly decreased the catalyst reactivity toward hydrogenation in isopropanol. Reaction evolution profiles and control experiments suggested that three reaction pathways were included, with the CO ether bond cleavage and subsequent hydrogenolysis taking precedence over the dehydrogenation or hydrodeoxygenation routes. This work provides an economical and environmentally-friendly method for the selective cleavage of lignin and lignin model compounds into value-added chemicals, which holds great promise in industrial application.

» Author: Yao-Bing Huang, Ji-Long Zhang, Xuan Zhang, Xue Luan, Hao-Ze Chen, Bin Hu, Li Zhao, Yu-Long Wu, Qiang Lu
» Publication Date: 01/12/2022
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
