AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Interfacial engineering boosting the piezocatalytic performance of Z-scheme heterojunction for carbamazepine degradation: Mechanism, degradation pathway and DFT calculation
In this work, a Z-scheme Bi2S3-Bi2WO6 (BS-BWO) heterojunction with interfacial Bi-S bonds was constructed by in-situ growing Bi2S3 nanorods on Bi2WO6 nanosheets. The obtained BS-BWO heterojunction exhibited significantly enhanced piezocatalytic performance on carbamazepine (CBZ) degradation with an apparent rate constant of 0.087?min?1. Density functional theory (DFT) calculations together with experimental characterizations illustrated that the boosted piezocatalytic performance of BS-BWO could be ascribed to the Z-scheme charge transfer through the formed Bi-S bonds, which increased the charge transfer/separation efficiency and maintained the strong redox ability of photogenerated electrons/holes. Moreover, the increased piezoelectric potential of BS-BWO, as supported by COMSOL simulation, also contributed to the enhanced piezocatalytic performance. This study sheds light on the design and development of promising piezocatalysts for environmental remediation.
» Author: Yuanhao Cheng, Juan Chen, Peifang Wang, Wei Liu, Huinan Che, Xin Gao, Bin Liu, Yanhui Ao
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es