AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Effect of irrigation with treated wastewater on bermudagrass (<i>Cynodon dactylon</i> (L.) Pers.) production and soil characteristics and estimation of plant nutritional input
In recent years, climate change has greatly affected rainfall and air temperature levels leading to a reduction in water resources in Southern Europe. This fact has emphasized the need to focus on the use of non-conventional water resources for agricultural irrigation. The reuse of treated wastewater (TWW) can represent a sustainable solution, reducing the consumption of freshwater (FW) and the need for mineral fertilisers. The main aim of this study was to assess, in a three-year period, the effects of TWW irrigation compared to FW on the biomass production of bermudagrass [Cynodon dactylon (L.) Pers.] plants and soil characteristics and to estimate the nutritional input provided by TWW irrigation. TWW was obtained by a constructed wetland system (CWs) which was used to treat urban wastewater. The system had a total surface area of 100 m2. An experimental field of bermudagrass was set up close to the system in a Sicilian location (Italy), using a split-plot design for a two-factor experiment with three replications. Results highlighted a high organic pollutant removal [five days biochemical oxygen demand (BOD5): 61%, chemical oxygen demand (COD): 65%] and a good efficiency in nutrients [total nitrogen (TN): 50%, total phosphorus (TP): 42%] of the CWs. Plants irrigated with TWW showed higher dry aboveground dry-weight (1259.3 kg ha-1) than those irrigated with FW (942.2 kg ha-1), on average. TWW irrigation approximately allowed a saving of 50.0 kg TN ha-1 year-1, 24.0 kg TP ha-1 year-1 and 29.0 kg K ha-1 year-1 on average with respect to commonly used N-P-K fertilisation programme for bermudagrass in the Mediterranean region. Soil salinity increased significantly (p ? 0.01) over the years and was detected to be higher in TWW-irrigated plots (+6.34%) in comparison with FW-irrigated plots. Our findings demonstrate that medium-term TWW irrigation increases the biomass production of bermudagrass turf and contributes to save significant amounts of nutrients, providing a series of agronomic and environmental benefits.
» Author: Mario Licata, Davide Farruggia, Nicol? Iacuzzi, Claudio Leto, Teresa Tuttolomondo, Giuseppe Di Miceli
» Reference: https://doi.org/10.1371/journal.pone.0271481
» Publication Date: 15/07/2022
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es