AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Enhancing long-term tensile performance of Engineered Cementitious Composites (ECC) using sustainable artificial geopolymer aggregates
Artificial geopolymer aggregate is an emerging technology in the field of solid waste recycling, aiming to ease the exploitation of natural aggregates as well as reduce the environmental burden of industrial/urban/agricultural waste and by-product accumulations. In this study, geopolymer aggregates (GPA) were strategically utilized to enhance long-term tensile performance and sustainability of high-strength Engineered Cementitious Composites (ECC). Accelerated aging test was conducted to evaluate the long-term performance of GPA-ECC, with the conventional fine silica sand ECC (FSS-ECC) as the control group. It was found that after accelerated aging (i.e., to simulate long-term curing condition), the compressive and tensile strengths of both GPA-ECC and FSS-ECC increased. In addition, owing to the flaw effect of GPA, the long-term tensile ductility of GPA-ECC was maintained, while that of FSS-ECC decreased significantly. Compared with FSS-ECC, GPA-ECC showed better multiple cracking behavior, higher strain energy density, and finer crack width under both short- and long-term conditions. Finally, a cost analysis of ECC matrix was conducted to exhibit the cost-efficiency and sustainability of GPA-ECC. This study provides a sustainable approach for enhancing the long-term tensile performance of high-strength ECC based on artificial aggregates.
» Author: Ling-Yu Xu, Bo-Tao Huang, Qian Lan-Ping, Jian-Guo Dai
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es