AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Quantitative CT lung densitometry as an obstructive marker for the diagnosis of bronchiolitis obliterans in children
The purpose of this study is to evaluate the quantitative diagnostic performance of computed tomography (CT) densitometry in pediatric patients with bronchiolitis obliterans (BO). We measured the mean lung density (MLD) and represented the difference of MLD in inspiratory and expiratory phases (MLDD), the ratio of the MLD (E/I MLD), and the relative volume percentage of lung density at 50-Hounsfield unit (HU) interval threshold (E600 to E950). We calculated the sensitivity, specificity, and diagnostic accuracy of the lung density indices for the diagnosis of BO. A total of 81 patients, including 51 patients with BO and 30 controls, were included in this study. In the BO patients, expiratory (EXP) MLD and MLDD were significantly lower, and E/I MLD and expiratory low attenuation areas below the threshold of ?850 HU to ?950 HU (E850, E900, and E950) were statistically significantly higher than controls. Multivariate logistic regression analysis showed that MLDD (odds ratio [OR] = 0.98, p < .001), E/I MLD (OR = 1.39, p < .001), and E850 to E950 were significant densitometry parameters for BO diagnosis. In a receiver-operating characteristic analysis, E900 (cutoff, 1.4%; AUC = 0.920), E/I MLD (cutoff, 0.87; AUC = 0.887), and MLDD (cutoff, 109 HU; AUC = 0.867) showed high accuracy for the diagnosis of BO. In conclusion, the lung CT densitometry can serve as a quantitative marker providing additional indications of expiratory airflow limitation in pediatric patients with BO.
» Author: Hye Jin Lee, Seong Koo Kim, Jae Wook Lee, Soo Ah Im, Nack-Gyun Chung, Bin Cho
» Reference: https://doi.org/10.1371/journal.pone.0271135
» Publication Date: 07/07/2022
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es