
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Results from neutron imaging phase change experiments with LH2 and LCH4
Predicting evaporation and cryo-storage behavior of liquid hydrogen poses a challenge for both terrestrial energy infrastructure and long term space missions. The current understanding of cryogenic phase change and subsequent boil-off is limited, in part, because the values of accommodation coefficients (inputs to phase change models) are still lacking and experimental data to compute them are severely limited. In order to determine the accommodation coefficients, a new cryo/neutron imaging experiment was developed. Tests were conducted in the BT-2 Neutron Imaging Facility at the National Institute of Standards and Technology (NIST) by introducing propellant vapor into cylindrical aluminum (Al 6061) and stainless steel (SS 316) cells placed inside a 70 mm cryostat. Saturation points between 80 kPa - 230 kPa were tested for liquid H2 and CH4. Phase change was induced through precise control of pressure and/or temperature. Neutron imaging was used to visualize the liquid and evaporation/condensation rates were determined through image processing. Both hydrogen and methane are perfectly wetting fluids as evidenced by the formation of micro-scale thin film at the onset of condensation and varies in thickness with rate of phase change. The rates of phase change are a function of both the size of the container and the degree of offset from saturation. The unique experimental data, made available through a data repository, have the potential to serve as a bench mark for future studies or serve as a dataset for model validation.

» Author: Kishan Bellur, Ezequiel F. M?dici, Daniel S. Hussey, David L. Jacobson, Jacob LaManna, Juscelino B. Le?o, Julia Scherschligt, James C. Hermanson, Chang Kyoung Choi, Jeffrey S. Allen
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
