
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Two novel Zn (II)?-based metal?organic frameworks for rapidly selective adsorption and efficient photocatalytic degradation of hazardous aromatic dyes in aqueous phase
Two novel Zn-MOFs constructed from 5-hydroxy-2-nitroisophthalic acid (H2DIPA) and 5-(4-carboxy-2-nitrophenoxy)-2-nitroisophthalic acid (H3BPPA), namely: {[Zn2(DIPA)2(bimp)5]?DMF?2H2O}n (Zn-MOF 1), {[Zn2(HBPPA)2(bibp)2]?2H2O}n (Zn-MOF 2) (bimp?=?1,4-di(1H-imidazol-1-yl)butane, bibp?=?4,4?-bis(imidazolyl) biphenyl), have been synthesized under solvothermal conditions and characterized by single crystal X-ray diffraction, elemental analysis, IR spectra, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TG). The single-crystal X-ray diffraction analysis indicates that Zn-MOF 1 exhibits an uncommon 3-nodal framework with a (4?6?8)(4?63?82)(66) topology, whereas Zn-MOF 1 exhibits an uninodal 4-connected framework with a (44?62) topology. Moreover, both of the two Zn-MOFs exhibit exceptional dye adsorption capacities towards the organic dyes with high adsorption rates and excellent adsorption amounts. Particularly, Zn-MOF 1 can selectively adsorb the cationic dye malachite green (MG) whereas Zn-MOF 2 adsorb the anionic dye methyl orange (MO) when there exists another kind of dye in the system. The adsorption process can be illustrated by pseudo-second order kinetic and Langmuir isotherm, and the feasible adsorption mechanism could be the electrostatical interactions, hydrogen bonding between the MOFs and the dyes. Meanwhile, the two Zn-MOFs also show good photocatalytic degradation capabilities toward MB/MV dyes under UV irradiation, and the mechanism studies demonstrate that the main active species are ?OH radicals. Therefore, this functional MOF materials can be treated as a convenient and cost-efficient solution for the sewage handling and environmental protection.

» Author: Ruixue Wu, Xia Zhang, Jinmiao Wang, Lulu Wang, Bin Zhu, Cungang Xu, Guanning Cui, Dongmei Zhang, Yuhua Fan
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
