AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Two novel Zn (II)?-based metal?organic frameworks for rapidly selective adsorption and efficient photocatalytic degradation of hazardous aromatic dyes in aqueous phase
Two novel Zn-MOFs constructed from 5-hydroxy-2-nitroisophthalic acid (H2DIPA) and 5-(4-carboxy-2-nitrophenoxy)-2-nitroisophthalic acid (H3BPPA), namely: {[Zn2(DIPA)2(bimp)5]?DMF?2H2O}n (Zn-MOF 1), {[Zn2(HBPPA)2(bibp)2]?2H2O}n (Zn-MOF 2) (bimp?=?1,4-di(1H-imidazol-1-yl)butane, bibp?=?4,4?-bis(imidazolyl) biphenyl), have been synthesized under solvothermal conditions and characterized by single crystal X-ray diffraction, elemental analysis, IR spectra, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TG). The single-crystal X-ray diffraction analysis indicates that Zn-MOF 1 exhibits an uncommon 3-nodal framework with a (4?6?8)(4?63?82)(66) topology, whereas Zn-MOF 1 exhibits an uninodal 4-connected framework with a (44?62) topology. Moreover, both of the two Zn-MOFs exhibit exceptional dye adsorption capacities towards the organic dyes with high adsorption rates and excellent adsorption amounts. Particularly, Zn-MOF 1 can selectively adsorb the cationic dye malachite green (MG) whereas Zn-MOF 2 adsorb the anionic dye methyl orange (MO) when there exists another kind of dye in the system. The adsorption process can be illustrated by pseudo-second order kinetic and Langmuir isotherm, and the feasible adsorption mechanism could be the electrostatical interactions, hydrogen bonding between the MOFs and the dyes. Meanwhile, the two Zn-MOFs also show good photocatalytic degradation capabilities toward MB/MV dyes under UV irradiation, and the mechanism studies demonstrate that the main active species are ?OH radicals. Therefore, this functional MOF materials can be treated as a convenient and cost-efficient solution for the sewage handling and environmental protection.
» Author: Ruixue Wu, Xia Zhang, Jinmiao Wang, Lulu Wang, Bin Zhu, Cungang Xu, Guanning Cui, Dongmei Zhang, Yuhua Fan
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es