
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
NiCo2O4@PPy concurrently as cathode host material and interlayer for high-rate and long-cycle lithium sulfur batteries
The large-scale practical application of cost-efficient lithium sulfur (Li?S) battery with high energy density is impeded due to the shuttle effect and torpid kinetics of polysulfides. Hence, it is significant for Li?S battery to solve these disadvantages to boost the electrochemical performances and facilitate the popularization in various fields. Herein, we synthesized a conductive NiCo2O4@PPy micro-flower-like material via hydrothermal technique followed by subsequent in-situ vapor phase polymerization, and the material was assembled into Li?S batteries to obtain satisfactory electrochemical performances. Flower-like NiCo2O4 expedites the conversion of polysulfides through both physical adsorption and chemical anchoring. Polypyrrole can efficaciously confine polysulfides shuttling, increase the conductivity and concurrently promote lithium ions diffusion. NiCo2O4@PPy is simultaneously served as the effective cathode material and multi-functional interlayer for anchoring-catalyzing polysulfides, which can exhibit a satisfying initial capacity of 1588?mAh g?1 at 0.1C, and the average coulomb efficiency is 95.2%. The highest discharge specific capacity of 740?mAh g?1 is displayed at 2C and the capacity decay rate is 0.107% per cycle after 400 cycles. NiCo2O4@PPy composite is a favorable sulfur host material intimated by these new results, and it is also a competent candidate of interlayer in high-performance Li?S batteries.

» Author: Lumin Ma, Bin Yue, Xinyue Li, Haiyang Liu, Xu Wang, Jinxian Wang, Guixia Liu, Wensheng Yu, Xiangting Dong
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
