AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Development of recyclable pH-responsive magnetic nanospheres via RAFT polymerization and their application in Pickering emulsions
A controllable and efficient method for the preparation of dual-stimulus-responsive magnetic nanospheres (IO/P) as particle emulsifiers via reversible surface addition and fragmentation chain transfer (RAFT) polymerization was described. FTIR, TGA, TEM and VSM were used to prove that the grafting reaction proceeded successfully. The interfacial properties of the magnetic nanospheres at pH from 2 to 12 were characterized by interfacial tension meter. The IO/P Pickering emulsion had dual-responsiveness of pH and magnetic, which was stable at pH 8?10, and could be rapidly broken by changing pH value or under the action of an external magnetic field. The emulsion could undergo at least 5 emulsification-demulsification cycles, which were triggered by changing pH value. The stabilization/destabilization of IO/P Pickering emulsions was triggered by the synergistic effect of applied magnetic field, surface wettability, and zeta potential, which led to the adsorption/exfoliation of IO/P on the water-oil interface. In addition, the effects of polymer segment length, particle concentration, water-oil ratio, and oil phase polarity on emulsion stability were investigated in detail. pH and magnetic stimuli-responsive Pickering emulsifier provided opportunities for oily wastewater treatment, water-oil separation, and design of crude oil delivery systems.
» Author: Keran Li, Hui Dai, Jing Li, Qin Zhang, Bin Wang
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es