
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Sensing spectrum sharing based massive MIMO radar for drone tracking and interception
Radar sensors are becoming crucial for environmental perception in a world with the tremendous growth of unmanned aerial vehicles (UAVs) or drones. When public safety is a concern, the localization of drones are of great significance. However, a drone used for a wrong motive can cause a serious problem for the environment and public safety, given the fact that the dynamic movement of a drone?s emission signal and location tracking is different from existing positioning. This study proposes a safety zone characterized by the presence of N radars sensors with a goal to track and destabilized rogue drones attending to penetrate safety zones (stadium and school). Specifically, a new joint estimation based on a Gaussian filter has been introduced for spectrum sharing and detection awareness. The profit of this novel sensing method can be clearly seen when the two joint hidden states are taken into consideration. Therefore, the drone?s emission state is analyzed by estimating its movement jointly. Considering the drone?s unknown states and actual positioning, an algorithm is developed based on dynamic states space model. Where Bernoulli filter model is designed to estimate recursively the unknown stages of the drone and its changing location based on time. Meanwhile a power control acted from the radar to the targeted drones so that rogue drones are optimally tracked and destabilized over time. Furthermore, an expanding mechanism has been generated to accurately track the drone and enhance detection. A thoughtful result of the experimentation shows clearly that, even when the drone is moving, spectral detection can be performed accurately by chasing its positions. Its demonstrates at 90% of credibility that the original signal has a direct effect on the propagated signal. Therefore, the magnitude of the Doppler shift increases with frequency. And the clue of its positioning can be used for cognitive radio optimization.

» Author: Milembolo Miantezila Junior, Bin Guo
» Reference: https://doi.org/10.1371/journal.pone.0268834
» Publication Date: 20/05/2022
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
