AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Migration mechanism of carbon nanotubes and matching viscosity-dependent morphology in Co-continuous Poly(lactic acid)/Poly(?-caprolactone) blend: Towards electromagnetic shielding enhancement
Selective distribution of carbon nanotubes and morphology of conductive polymer composites were very important factors to their electrical conductivity and electromagnetic waves (EMW) shielding performance. Herein, the migration behavior of carbon nanotubes (CNTs) in co-continuous poly(lactic acid)/poly(?-caprolactone) (PLA/PCL) blend was investigated via pre-compounding CNTs in one phase and controlling the mixing time. Because of the higher interaction between CNTs and PCL phase, the migration of CNTs happened from PLA phase to PCL phase when CNTs were pre-mixed with PLA. Due to the viscosity enhancement of pre-compounding PCL/CNT and PLA/CNT, the matching viscosity-dependent morphology was obvious in the composites with different mixing sequences. The better viscosity matching of two polymer phases resulted in the smaller size of two phases, which had more interfaces to enhance microwave attenuation. The effect of CNTs migration and mixing rates on morphological size and EMW shielding performance of the composites were also evaluated. Specifically, the composites with pre-mixing PCL/CNT and then PLA at low shear stress exhibited the smaller size of phases and higher EMW shielding effectiveness (SE) values because of higher interfacial polarization and higher multiple reflection/scattering.
» Author: Jun-Ru Tao, Dian Yang, Yi Yang, Qian-Ming He, Bin Fei, Ming Wang
» Publication Date: 14/06/2022
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es