
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
An elastic-plastic solution for the optimal thickness of a frozen soil wall considering an interaction with the surrounding rock
The technology of artificial ground freezing has been widely applied in geotechnical engineering to support underground spaces, whereas the effects of excavation-induced large deformation and frictional and dilatant behavior of geomaterials are neglected in the current design. In this paper, a rigorous elastic-plastic solution of cavity contraction is proposed using a non-associated Mohr-Coulomb failure criterion to provide the optimal thickness of the frozen soil wall for excavation using artificial ground freezing technology, considering an interaction between the frozen soil wall and the surrounding soil/rock. After validation of a case study on a deep mine shaft against a numerical simulation, a thorough parametric study investigates the variation in the optimal thickness with the soil properties and initial stress conditions, as well as the effects of interaction and the critical condition. Compared to the existing solution, the proposed optimal thickness of the frozen soil wall is shown to contribute to both the design and cost-effectiveness in practical engineering, including tunneling and mine shaft construction.

» Author: Lianfei Kuang, Pin-Qiang Mo, Kuan-Jun Wang, Bin Chen
» Reference: https://doi.org/10.1371/journal.pone.0267014
» Publication Date: 26/04/2022
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
