
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Spatial and temporal analysis of the increasing effects of large-scale infrastructure construction on the surface urban heat island
With the rapid development of China's economy and the continuous improvement of people's living standards, large-scale infrastructure constructions (LSICs) are also increasing rapidly. LSICs with impervious surfaces have increasingly resulted in replacing natural landscapes, altering surface radiation, thermal properties, and humidity in urban areas. To study the environmental thermal changes of Beijing Daxing International Airport before and after its construction and operation, four Landsat-8 images (from the year of 2014, 2017, 2019, and 2021) were used to calculate the land surface temperature (LST). Then the LST values of four images covering the study area were compared and analyzed using the urban heat island ratio index (URI). Results show that the URI value of this area increased from 0.120 of 2014 to 0.185 of 2017 after the construction of Daxing Airport, indicating that the urban surface heat island effect in this area greatly increased. Additionally, the URI value of this area increased from 0.153 of 2019 to 0.206 of 2021 after the operation of Daxing Airport, indicating that the surface urban heat island effect in this area further increased. Therefore, we infer that this effect is closely related to airport construction and operation. Afterward, the random forest classification algorithm is used to classify land types based on pixels, and then the relationship between URI and land classification types was discussed. It is found that before the construction of Daxing Airport, both dark buildings and bare land contribute significantly to the thermal environment of the airport. After the completion of Daxing Airport, the contribution model was changed to high-reflectivity buildings and bright soil. The thermal pollution generated by the airport has a greater impact on the ground objects within the range of 7.5?km, and a relatively smaller impact on the ground objects outside the range of 9.5?km. Our results can provide a valuable reference for the study of the thermal environment caused by human activities.

» Author: Jikang Wan, Bin Yong, Xiaofeng Zhou
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
