AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Physicochemical transformation and enzymatic hydrolysis promotion of reed straw after pretreatment with a new deep eutectic solvent
This work proposed a promising biorefinery method for the deconstruction of reed straw by using a novel deep eutectic solvent (DES) consisted of benzyltriethylammonium chloride/formic acid (BTEAC/FA). BTEAC/FA showed significant delignification and xylan removal while preserving most of the cellulose. Under the optimum conditions (molar ratio: 1:6), the glucose yield of cellulose-rich substrates by enzymatic hydrolysis reached 76.64%, which was about 5.24-fold higher than that of raw reed straw. The removal of lignin and hemicellulose and the changes in the cellulose crystal structure were presumed to the reason for enhancing enzymatic hydrolysis efficiency. The highest lignin yield reached 78.34%. Moreover, the lignin exhibited high purity (84.25%?91.45%), medium molecular weight (3812?9918?g/mol), and low polydispersity (1.47?2.75) because of the cleavage of ?-O-4 and ?-? linkages. Overall, this work provided a theoretical basis for the in-depth utilization of reed straw.
» Author: Zhaohui Zhang, Jun Xu, Junxian Xie, Shiyun Zhu, Bin Wang, Jun Li, Kefu Chen
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es