AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Fluorinated acrylic monomer modified core-shell polyacrylate latex particles: Preparation, properties and characterizations
The core-shell acrylic emulsion was synthesized by a semicontinuous seeded emulsion polymerization with acrylate monomers as the main materials and octafluoropentyl methacrylate (OFPMA) as modified monomers. The influences of OFPMA on the hydrophobicity, thermal stability and mechanical properties of acrylic latex film were investigated. Fourier transform infrared spectroscopy (FTIR) analysis and X-ray photoelectron spectroscopy (XPS) indicated that the OFPMA was successfully incorporated into the acrylic resin chain. Transmission electron microscope (TEM) image showed a core-shell structure of the emulsion particles. The addition of OFPMA reduced the water absorption ratio (3.2?wt%) of the latex film and improved its water resistance. Contact angle of coating film surface increased from 80.7? to 90.7?. Moreover, TGA curves showed that the addition of OFPMA increased the initial decomposition temperature of the polymer from 355 to 370??C. Additionally, with the addition of OFPMA, the tensile strength of modified polymers was also improved to 7.77?MPa compared to pure acrylic resin. The application of the core-shell structure can reduce the amount of fluorine-containing acrylic monomers and environmental pollution, and improve economic benefits. This study provides a new kind of environmentally friendly waterborne acrylic resin and a simple method for optimizing the performance of waterborne resins.
» Author: Fuhao Zhang, Cheng Jing, Zhangyin Yan, Shengsong Ge, Ping Liu, Srihari Maganti, Ben Bin Xu, Khaled H. Mahmoud, Zeinhom M. El-Bahy, Mina Huang, Zhanhu Guo
» Publication Date: 28/04/2022
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es