
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Nano-projectiles impact on graphene/SiC laminates
The ballistic performance of graphene/silicon carbide laminates under nano-projectile impact is studied using molecular dynamics method, where graphene acts as a barrier coating for its unique intra-layer honeycomb-like structure and interlayer coupling effects. We reveal that under nano-indentation two-layer graphene with AB-stacking on 4H-silicon carbide(0001) exhibits the highest hardness, ? 140.06 GPa, comparable to diamond. During impact, the specific total penetration energy of laminates increases with the number of graphene layers n, though the partial of graphene decreases as n???3, which results from the van der Waals coupling effect of graphene on silicon carbide substrate. The ballistic limit velocity of silicon carbide coated by five-layer graphene is 69.4% higher than that of bare silicon carbide, leading to an increase of specific total penetration energy, ? 43.3%. It is interesting that the ballistic performance of two-layer graphene/silicon carbide is enhanced by the formed sp3 bonds and residual bending deformation under secondary impact (after the first low-velocity impact treatment), with the ballistic limit velocity and specific total penetration energy increased by 6.5% and 14.3%, respectively. Graphene is a promising coating that can preserve the functional integrity of materials underneath against hypervelocity impact.

» Author: Hong Tian, Bin Zhang
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
