
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
A feature transferring workflow between data-poor compounds in various tasks
Compound screening by in silico approaches has advantages in identifying high-activity leading compounds and can predict the safety of the drug. A key challenge is that the number of observations of drug activity and toxicity accumulation varies by target in different datasets, some of which are more understudied than others. Owing to an overall insufficiency and imbalance of drug data, it is hard to accurately predict drug activity and toxicity of multiple tasks by the existing models. To solve this problem, this paper proposed a two-stage transfer learning workflow to develop a novel prediction model, which can accurately predict drug activity and toxicity of the targets with insufficient observations. We built a balanced dataset based on the Tox21 dataset and developed a drug activity and toxicity prediction model based on Siamese networks and graph convolution to produce multitasking output. We also took advantage of transfer learning from data-rich targets to data-poor targets. We showed greater accuracy in predicting the activity and toxicity of compounds to targets with rich data and poor data. In Tox21, a relatively rich dataset, the prediction model accuracy for classification tasks was 0.877 AUROC. In the other five unbalanced datasets, we also found that transfer learning strategies brought the accuracy of models to a higher level in understudied targets. Our models can overcome the imbalance in target data and predict the compound activity and toxicity of understudied targets to help prioritize upcoming biological experiments.

» Author: Xiaofei Sun, Jingyuan Zhu, Bin Chen, Hengzhi You, Huiqing Xu
» Reference: https://doi.org/10.1371/journal.pone.0266088
» Publication Date: 30/03/2022
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
