In this section, you can access to the latest technical information related to the FUTURE project topic.

The essential role of hydrophobic interaction within extracellular polymeric substances in auto-aggregation of P. stutzeri strain XL-2

To enrich the understanding of bio-aggregates formation, the mechanism of auto-aggregation is one of the concerns in wastewater treatment. The auto-aggregation ability by P. stutzeri strain XL-2 was mainly attributed to the self-secretion of extracellular polymeric substances (EPS). A comprehensive correlation analysis indicates that hydrophobic interaction within EPS played essential roles in auto-aggregation. To give insights into the underlying mechanisms, tightly bound EPS (TB-EPS), loosely bound EPS (LB-EPS) and soluble EPS (S-EPS) were characterized by colorimetry, hydrophobicity, enzymatic hydrolysis, FT-IR spectroscopy and XPS analysis, showing that proteins in TB-EPS comprised a high proportion of hydrophobic carbon-containing (C-containing) functional groups. Further amino acids analysis revealed that these C-containing functional groups might derive from the hydrophobic R groups of amino acids, which significantly affected the surface hydrophobicity of proteins in TB-EPS and thus promoted the auto-aggregation of strain XL-2. This work provides an in-deep understanding of the auto-aggregation mechanism by strain XL-2, which may enrich the understanding of microbial aggregates formation and lead to further application of strain XL-2 in wastewater treatment processes.

» Author: Dan qing Wu, Xue Song Ding, Bin Zhao, Qiang An, Jin Song Guo

» Publication Date: 01/07/2022

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es