AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
High-strength and super-hydrophobic multilayered paper based on nano-silica coating and micro-fibrillated cellulose
Herein, a facile strategy was proposed for preparing a high-strength and super-hydrophobic packaging paper with improved moisture and air barrier properties, which was derived from cellulosic pulps, micro-fibrillated cellulose (MFC), and nano-silica (n-SiO2). Owning to the laminated process followed by spraying approach, MFC and n-SiO2 were assembled onto two surfaces of the cellulose paper base, respectively, endowing the mechanical behaviors and superhydrophobic performance of this biodegradable composite papers as packaging material. The as-obtained multilayered papers demonstrated impressive dry tensile strength and remarkable wet tensile strength of 6542.5?N/m and 5875?N/m, which were increased by 56% and 2277%, respectively. In addition, the multilayered paper with rational mechanical properties possessed low permeabilities of air (3.17??10?3??m?Pa?1?s?1), oxygen (9.687?cm3?m?2?day?1?atm), and water vapor (378.24?g?m?2?day?1), respectively, as well as a superhydrophobic performance with the contact angle of ~151.2?. Overall, the feasibility of large-scale production of biodegradable packaging materials in the paper-making industry is demonstrated by the fact that the micro/nanostructures and hydrophobic surfaces could be directly constructed on cellulosic paperboard.
» Author: Haoying Chen, Bin Wang, Jinpeng Li, Guangdong Ying, Kefu Chen
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es