
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
High-strength and super-hydrophobic multilayered paper based on nano-silica coating and micro-fibrillated cellulose
Herein, a facile strategy was proposed for preparing a high-strength and super-hydrophobic packaging paper with improved moisture and air barrier properties, which was derived from cellulosic pulps, micro-fibrillated cellulose (MFC), and nano-silica (n-SiO2). Owning to the laminated process followed by spraying approach, MFC and n-SiO2 were assembled onto two surfaces of the cellulose paper base, respectively, endowing the mechanical behaviors and superhydrophobic performance of this biodegradable composite papers as packaging material. The as-obtained multilayered papers demonstrated impressive dry tensile strength and remarkable wet tensile strength of 6542.5?N/m and 5875?N/m, which were increased by 56% and 2277%, respectively. In addition, the multilayered paper with rational mechanical properties possessed low permeabilities of air (3.17??10?3??m?Pa?1?s?1), oxygen (9.687?cm3?m?2?day?1?atm), and water vapor (378.24?g?m?2?day?1), respectively, as well as a superhydrophobic performance with the contact angle of ~151.2?. Overall, the feasibility of large-scale production of biodegradable packaging materials in the paper-making industry is demonstrated by the fact that the micro/nanostructures and hydrophobic surfaces could be directly constructed on cellulosic paperboard.

» Author: Haoying Chen, Bin Wang, Jinpeng Li, Guangdong Ying, Kefu Chen
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
